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An analytical solution is given for the problem of the steady temperature field 
of a homogeneous plate dividing two media having different temperatures and 
having a continuous plane slot, through which one of the media is forced. 

In connection with the wide development of panel cons=ruction in the housing market, it 
is important to investigate the temperature field of the zone of coupling of two adjacent 
panels. This zone, as a rule, contains an air gap (a slot), along which air can diffuse; 
this diffusion has a considerable effect on the temperature field of the panel and, hence, 
on the thermal regime of the room. 

The available analytical [1, 2] and numerical [3, 4j investigations of the problem under 
consideration so far have not yielded a sufficiently simple and universal calculatlonal 
relationship for the temperature field of a plate with slotted diffusion. 

The problem consists of finding a plane, with temperature field of a plate dividing two 
media: an inner medium with temperature tl and an outer medium with temperature t o . The 
heat-exchange coefficients on the respective plate surfaces equal ~i and no. The plate has 
a continuous plane slot of width h, along which with velocity v there moves an infiltrant, 
with known density 0o, specific heat co, viscosity ~o, and thermal conductivity lo. Also 
given are the plate thickness 6, the plate thermal conductivity X, and the heat-exchange co- 
efficient of the infiltrant in the slot ao. 

To simplify the solution of the problem, we approximate thlrd-order boundary conditions 
on the surfaces of the plate by boundary conditions of the first kind, after replacing the 
given plate by an equivalent plate of thickness 6, = I/d o + ~ + %/ai with given temperatures 
to and ti of the outer and inner surfaces of the equlvalent'plate. 

We superpose the axis of abscissas on the surface of the slot, and the axis of ordi- 
nates on the outer surface of the equivalent plate, having chosen the quantity 6: as the 
scale of the dimensionless coordinates x and y. 

Proceeding from the symmetry of the temperature field with respect to the slot axis, we 
write the heat-balance equations on the walls of the slot, connecting the temperature of the 
infiltrant to(x) with the temperature of the plate =(x, y), in the form 

pocovh dto (x) % at (x, O) 
= ~o It (x, o) - -  to (x)] - ( 1 )  

261 dx 6~ Oy 

or, converting to the dimensionless temperatures 

O o ( x ) =  t o ( x ) - - t o  , O(x, y ) =  t(x,  y ) - - t o  
t i -  t o t~ - t  o 

and the dimensionless groups 

N u =  a~ , Re vh Pe pocovh ~ 5i = - - ,  : - - ,  B i :  , 
Vo ;~o 

Gz=Pe h k-- ao 61 Nu --, ----, m= ~----2-- 
~i ai h ' Gz 

we can write system (i) in the form of two equations: 

dOo = ~[O(x, 0 ) - -  %1, 
dx 

O~ o 

' P ~  - ~ o  ' s ~  - -  , 

(2) 
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[5, 

i.e., 

o(x, o ) = O o ( x ) +  P oo(x, o) 
m Nu Og (3) 

In this case, for a plane slot, with linear variation in wall temperature, as is known 
6], for laminar flow (Re < 10 s) we have 

N u = 4 . 1 2  (Gz<20),  N u =  1.47Gz 1/3 (Gz>20) ,  (4) 

fi=8.24Gz -1 (Gz<20),  8=2-94Gz-2/3 (Gz>20).  (5) 

Solving Eq. (2) with condition 0o(0) = 0 (equating the temperature of the infiltrant at 
the slot inlet to the temperature t o of the medium, which is subjected to infiltration), we 
ob tain 

X 

0o(X)=~ j' 0(z, 0 ) e x p [ - - ~ ( x - - z ) l  dT. (6) 
0 

S u b s t i t u t i n g  the  va lue  found fo r  (6) i n t o  the  r i g h t  s i d e  of  Eq. (3) we o b t a i n  a boundary 
condition for the unknown function 0(x, y) for y = 0: 

p 00 (x, 0) (7) 
0 (x, 0) = J} ,t" 0 (T, 0) exp [-- [3 (x - -  ~)] dT + m Nu ay 

0 

As for the other boundary condition along the y coordinate, the condition will be that 
the temperature field of the plate is one-dimenslonal far from the slot 

Oo (x, oo)/@ = O. (8) 

Finally, the boundary conditions along x will be the equality of the temperatures of 
the surfaces of the equivalent plate to the given temperatures t o and t i, i.e., 

0(0)=0, O(1)= 1. (9) 
Using the Fourier method, as solution of the Laplace equation 

aF0 020 0, (i0) 
Ox~ + 0y2 

s a t i s f y i n g  c o n d i t i o n s  (8 ) -  (9) ,  we o b t a i n  

0(x, y ) = x +  ~ C~exp(--n~y)sinn~x. (11) 
n =  1 

Using the remaining boundary condition (7) for determinihg C n we obtain 

(12) 
n~p ] n%'~ [ 1 .  (-- 1)" exp (-- ~)] ~ }] 

+ mN--uu / @ q- n2~9 ~" 2 (13 2 + n*~ 2) ' " 

Thus, gqs. (11)-(12) represent the unknown solution for the" temperature field of the 
equivalent plate. In order to convert to the temperature field of the real plate, it is 
necessary only to take into account that the outer surface of this plate corresponds to the 
coordinate x = X/no6: = i/kBi, and the inner surface corresponds to the coordinate x = 1/ 
~,(X/a o + 8) = i-- I/Bi. 

Finally, for the temperature of the infiltrant, from Eqs. (6) and (ii) we have 

Oo(x ) ='[~ S ('~ @ ~ Cnsinn~l:)exp[--~}(x--'Q] dx. (13) 
0 n =  1 

Of greatest practical interest is the extreme temperature of that surface of the plate 
in the direction in which the slotted filtration occurs, i.e., in the considered case, the 
extreme temperature of the inner surface is equal to 

( ')E (') 0 i s ( 0 ) = 0  1 13i ' 0 = C,~sinnrc I - -  Bi q - l ~ B V t  (14") 
n =  1 ' 
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Fig. i. Effect of filtration on extreme temperature of plate 
surface: solid curves) exact solution (Bi= 8.875, p = 15); 
dashed curves) calculation based on Eq. (20); dot-dash llne) 
calculation based on Eq. (17): i) sBi = 150; 2) 75; 3) 37.5; 
4) 18.8; 5) 9.4; 6) 4.7. 

For convenience in analyzing the obtained solution, we convert from the dimensionless 
temperature 8is(0) = (tis(0)- to)/(t i --t o ) to the dimensionless temperature 

A0is= 0is(~)--0i~(0)  ~ s ( ~ ) - - t i s ( 0 )  --Bi s C~sinna ( 1 _  1 ) 
0 is (~  ) = t i s ( ~ ) - - t o  Bi - -1  B~ ' (15) 

where 0is(~ ) = i -- i/Bi is the value of the dimensionless t~perature of the inner surface 
of the plate for y + ~. 

For small flow rates of the infiltran=, ~en Pe + 0, Gz § 0, and hence according to (5)~ 
B + ~, from Eqs. (12) and (15) we find 

2BiPe 
a2p (Bi - -  1) As.=t 

s in(2n-- l )  r~'(1 - 1-~) 
Bi , = 

( 2 n -  1) z 
(16) 

a/2Bi 

~Zp(Bi_ 1) . rt~p(Bi-- I) 2Bi 2----~ -r 2Bi 9 \2Bi)  450 2Bi / - -  " "  " 
0 

For the prac=ical applications indicated above, the values 7 < Bi < 15 are characteristic; 
therefore, the error connected with discarding terms of the series (16) of third and higher 
degree does not exceed i% of the quantity gels. Therefore, as a calculational formula for 
small values of Pe we have 

Pe ( l - - I n  ~ )  
A0is = ~p(Bi--  1) 2B' " (17) 

Figure 1 gives a comparison of the quantities &Sis found analytically and numerically; 
the function (17) is shown by the dot--dash llne. 

For large values of Pe~ when Gz § ~ and B + 0, from Eqs. (12) and (15) we obtain 

A0is = 2Bi i (--1)" sin n~ ( 1 - -  B~)  
~(Bi--1)  n=l n ( l + s ~ i )  ' (18) 

where for the case s + ~, gq. (18) gives the obvious result: AOls = i. 

If we approximate (18) by the simpler relation 

AOis = 1--(sBi) -I/a, (i9) 

then as a calculational formula, applicable for all flow rates of the infiltrant and 
satisfying the limiting relations (17) and (19), we have 
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1--1n ~ ) 
AOis=[l_sBi)_, /a]{l_exp[ - 2Bi Pe ]} .  

n(Bi--  1) (1-- (sBi) -1/8) p (20) 

The values of AOis calculated from Eq. (20) are shown in Fig. i by the dashed curves. 
For the practically useable region of values h < 2 mm, corresponding to values sBi E (m/p). 
Nu > 35, Eq. (20) has an error on the order of 1%, and it can be used for practical calcula- 
tions. 

NOTATION 

ti and to, air temperatures outside the plate (for the inner and outer media, respec- 
tively); to(x), air temperature in the slot; t(x, y), temperature of the plate; So(x) and 
8(x, y), dimensionless temperatures; &Sis, dimensionless extreme temperature of the plate 
surface; p = I/Io, ratio of the thermal conductivities of the plate and the air; Pe = pocovh/ 
Io, Peclet number; h, width of the slot; v, mean air velocity in the slot. 
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MASS TRANSFER WITH A "MEMORY" WHEN DESCRIBING SORPTION PROCESSES 

L. S. Kalashnikova UDC 66.021.3 

The possibility of describing sorption processes by an integrodifferential equa- 
tion of mass transfer with a "memory" is pointed out. An analytical solution of 
this equation is given. 

When deriving the equations of sorption kinetics, the assumption that the isotherm has 
the form a = f(c) is equivalent to the assumption that the act of adsorption is instantaneous 
[1, 2]. In fact, in many processes in which chemosorption plays an important part, the char- 
acteristic times of the acts of adsorption may be so great that they cannot be neglected. In 
order to take into account the inertia of the adsorption processes, we can Consider an iso- 
therm of the form 

a = ?c + [ h (O) c (~ - -  O) dO. (1)  
0 

In this expression the first term defines the contribution of adsorption processes with small 
characteristic times, while the second relates to slow adsorption processes. The general 
equation of the kinetics of isothermal sorption 

0 
0--~- (c + a) = --  divq~ (2) 

can be represented, using Eq. (i), in the form 
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